If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=25A^2
We move all terms to the left:
(A)-(25A^2)=0
determiningTheFunctionDomain -25A^2+A=0
a = -25; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-25)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-25}=\frac{-2}{-50} =1/25 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-25}=\frac{0}{-50} =0 $
| -4(q-36)=0 | | j-19=62 | | q/9+31=35 | | v+10=99 | | 34-4z=2 | | 1.26x-4=0.41 | | s-54/7=5 | | 4x-3=2x=15 | | 2x+4x+6x+30=180 | | 4t-16=72 | | 1.24x-6=0.82 | | x-75=575 | | 16=20-4f | | 74=2(s-51) | | -4u-38=3(u+6) | | 8(t-88)=88 | | 10x-4=15x-40 | | j/7-2=2 | | 3^x*4=81 | | E=4.61x^2+43.4x+1620 | | 6z+7=2z*35 | | F(d)=110+.12d | | 7(4x+7)=161 | | 5(n+3)=75 | | 3d-127.32=10.56 | | (X+5)+y=180 | | 9(3-2x)=2(10-8x0 | | (4n-15+3n)=90 | | 9=q/4+5 | | (4n-15+3n)=180 | | -26=-2+4v | | 6x=9x+4 |